Powering Your Performance

Sustainable Optimization of Energy Efficiency

(in the chemical / pharmaceutical industry)

CERAMITEC 2009 – Munich – 22. October 2009 Dr. Philip Bahke

Agenda

Introduction

- Energy Efficiency Check
- Climate Footprint[®]
- Energy Efficiency Management

Increasing need to optimize energy efficiency and to reduce greenhouse gas emissions

Energy represents increasing share of operating costs at chemical plants

Percentage of total costs increased from ~3 to ~12 over last ten years due to rising energy prices

Chemical companies contribute significantly to man-made greenhouse gas emissions

Reduction targets defined by several companies

Reducing energy costs is key lever to increase profitability

Reducing greenhouse gas emissions is required for economic and social reasons

Increased expectations of governments in energy and CO₂ efficiency

Regulation started (EEG) and implementation of energy efficiency law (EnEfG) expected

Satisfy increasing regulatory requirements by having a management system in place

Several levers to improve energy efficiency in the chemical industry

Several levers to improve energy efficiency in the chemical industry

Energy Generation	 Co-generation plants – combined heat and power Total efficiency incl. heat extraction: ~85% Modern power generation efficiency: coal: ~43%, gas: ~55%
	Total site integration offers huge potentials
Site Integration	 Energy integration between processes: heat of exothermal processes is used → design of steam pressure levels crucial
	Well balanced material usage, e.g. no by-product flaring (H ₂)
Production Process	 Best available technology (BAT) New type of process technology and equipment design Optimized process operation
Products	 Modern insulation materials for buildings or cooling units
CERAMITEC – Munich – 22. October 20	 Plastics to reduce weight of cars

Focus on existing as well as on development of new processes and site networks

Optimization of existing processes and site network

- Potential savings: 5 20 %
- Short-term implementation possible

Low costs

Development of new processes and site network

- Potential savings: 20 80 %
- Long-term implementation
- High costs (R&D and investment)

Existing processes: energy efficiency optimization need to consider three elements

Sustainable energy efficiency is divided in two parts

Energy Efficiency Check

- is a systematic screening
- identifies measures for energy & CO₂ emission reduction
- results in improvement suggestions

Energy Efficiency Management

- ensures sustainable implementation of improvement measures
- sustains a high awareness level

The Bayer Climate Check is a lighthouse project of the Bayer Climate Program

Bayer Climate Program We help with solutions

Ambitious targets

The subgroups have set themselves new ambitious emissions targets for 2020:

Bayer MaterialScience

Reduction of specific greenhouse gas emissions for every metric ton of product sold by 25 percent

Bayer CropScience:

- Reduction of absolute greenhouse gas emissions by 15 percent
- 9

- Bayer HealthCare:
 - Reduction of absolute greenhouse gas emissions by 5 percent

Bayer Climate Program

CERAMITEC – Munich – 22. October 2009 Philip Bahke

Our lighthouse projects

Bayer Climate Program

BAYER

The Bayer Climate Check will be applied to all relevant Bayer production units worldwide

The Bayer Climate Check...

- will be applied to all relevant Bayer production units worldwide
- supports achievement of targeted climate goals of Bayer subgroups
- consists of the two elements:
 - Energy Efficiency Check
 - Climate Footprint[®]

Scope:

 App. 100 Bayer production plants on 40 sites worldwide will be analyzed by the end of 2009.

Agenda

- Introduction
- Energy Efficiency Check
- Climate Footprint[®]
- Energy Efficiency Management

Analysis Phase determines main levers for energy reduction

Analysis & Data Collection

- Identify main energy consumers
- Determine consumption data by measurement, balance or process simulation
- Perform plausibility check: comparison of measurement vs. theory
- Determine degree of completeness
- Collect energy relevant data:
 - Operational process data (e.g. power, temperature, flows)
 - Technical equipment data
- Result: consistent data base

 e.g. consistent balance of heat sinks
 and sources by process simulation
 incl. energy relevant operating
 parameters

The Energy Efficiency Check considers a wide range of optimization levels

Idea generation phase determines suggestions for energy & CO₂ emission reduction

Sustainability

Sources for improvement suggestions:

- **Checklists & best practices**
- **Process experts**
- **Discipline experts** of required competences
- **Brainstorming sessions** & Interviews to incorporate improvement ideas from plant management and operating employees

Equipment check: evaluation of large energy consumers

Analysis

Idea Generation

Evaluation

Implementation

Sustainability

Equipment Check

- Evaluate larger single energy consumers
- Several checklists for main equipment developed,
 e.g. centrifugal pump: operating point and control strategy
- What we often see:
 - Pumps: up to 50 % of pressure increase is consumed in control valve
 → implement frequency drive
 - Heat exchanger for cooling: cooling media flow is not controlled
 - Heat exchanger for heating: steam pressure level is too high
 - Distillation columns: replace trays by packing
 - Equipment is always running

Optimize operating parameters and process control

Evaluation

Operational Improvements & Process Control

Improve process operation and process control

Idea

Generation

What we often see:

Analysis

- Distillation columns are operated at too high reflux flows → improve process control
- Reactors are operated with excess of solvent or reactant leading to large circulation flows → improve operation by e.g. online monitoring of process control (APC)
- **Batch plants**: high peak demands of utilities → improve production planning
- Specific energy consumption shows fluctuations
- Operating parameters are not challenged
- After failure processes remain in a "save" operating point
- Processes are operated in a "comfort zone"

Implementation

Sustainability

Improve heat integration & heat recovery by pinch analysis and novel technical solutions

Idea Generation

Evaluation

Implementation

Sustainability

Heat Integration & Heat Recovery

- Optimize heat integration by applying Pinch Analysis
 - Consideration of process modification essential,
 e.g. increased pressure in distillation leads to increased condensation temperature
- What we often see:
 - waste heat is "destroyed" with cooling water
- Recover waste heat by:
 - Pre-heating of feed streams
 - Generation of low pressure steam
 - Absorption chiller to produce chilled water
 - Applying vapor recompression or heat pumps to produce "valuable" heat

Optimize processes design

Process Improvements

- Improve design of process steps / unit operations and complete process
- Examples:
 - Evaporation or distillation: replace single step by multi-effect with heat integration
 - Product concentration: replace evaporation steps by membrane
 - Solvent selection: replace solvent by component with lower evaporation enthalpy or better separation factor
 - Reaction: check for application of innovative technologies like micro technology, process intensification, best catalyst etc.
 - Spray dryer: optimize atomization and heat recovery
 - Waste water stripper: implement vapor recompression by steam jet pump and feed preheating

Redesign of production process leads to significantly increased energy efficiency

Check buildings and facility

Analysis

Idea Generation

Evaluation

Implementation

Sustainability

Buildings & Facility

- Check illumination, insulation and leakages
- Assess specific energy consumption of buildings by benchmarks or balancing
- Assess heating, ventilating and air conditioning (HVAC)
- What we often see:
 - Insulation often inefficiencies
 → use IR camera to detect inefficiencies
 - Outdoor lighting is always on
 - HVAC: air exchange rates and humidity are higher than required; no heat recovery

Assess generation and distribution of energies & utilities

Analysis

Idea Generation

Evaluation

Implementation

Sustainability

Energy & Utility Systems

- Improve energy and utility generation and distribution
- What we often see:
 - Low overall boiler efficiency, e.g. due to no pre-heating or inefficient degassing of water → increase heat recovery
 - Let-down of high pressure steam to low pressures steam leads to enthalpy losses → implement steam turbine
 - Low level of condensate return / reuse
 - Low temperature difference in circulation systems
 → decrease circulation flow
 - No regular steam-trap maintenance
 - Heat tracing not turned off in summer
 - High peak loads → peak demand reduction

All improvement ideas are evaluated

Agenda

- Introduction
- Energy Efficiency Check
- Climate Footprint[®]
- Energy Efficiency Management

CO₂e emission reporting according to GHG protocol distinguishes 3 scopes

The Climate Footprint[®] is the indicator to asses the total climate impact of production processes

The Climate Footprint®

- is based on the Life Cycle Analysis method.
- covers the elements a product supplier could influence.
- summarizes direct emissions and emissions caused by energy consumption, raw materials and transport.

The Climate Footprint[®] visualizes different contributions

The Climate Footprint[®] visualizes individual climate impact and different contributions.

The Climate Footprint[®] is certified by TÜV Süd.

Basis Footprint

Carbon footprints are in public discussion.

Examples for Carbon Footprints

L'INDICE CARBONE de ce produit

Fort Impac

2109

OU SERVICE C

CARBON LABELS

These labels will soon be on products to help customers select goods produced in a climate-triendly process. The figure shows the amount of carbon dioxide reduction. The higher the figure, the greater the reduction.

Source: Thailand Greenhouse POSTgraphics **Gas Management Organisation**

" BLANC DE POULES SAUCESSES VADURT VANLLE

Especes Ferris

Agenda

- Introduction
- Energy Efficiency Check
- Climate Footprint[®]
- Energy Efficiency Management

Closing the awareness gap is a challenge

Individual energy savings initiatives cannot sustain a high awareness level over time.

Improvement of energy efficiency is achieved by optimized design and optimized operation

Energy efficiency management comprises four elements

To ensure implementation of design measures an improvement plan need to be managed

Evaluation

Implementation

Idea

Generation

Analysis

CERAMITEC – Munich – 22. October 2009 Philip Bahke Bayer Technology Services

Sustainability

More efficient operation requires transparency

More efficient operation means motivating the operator to leave the "comfort zone"

Cultural Change increases awareness for energy-conscious behavior and mindset

Sustainable energy and climate efficiency requires...

- an indicator to determine the climate impact
- a comprehensive identification of measures for energy & CO₂ emission reduction
- and an integrated energy management approach

Powering Your Performance

info@bayertechnology.com www.bayertechnology.com

